
 1

Eklavya 5.0: Autonomous Ground Vehicle Research Group
Indian Institute of Technology, Kharagpur, India

Faculty Advisor: Dr. Debashish Chakravarty*

INTRODUCTION

Team Autonomous Ground Vehicle (AGV), under the ambit of Center for Robotics, IIT Kharag-

pur, has been pioneering the autonomous ground vehicle technology with the ultimate aim of de-

veloping the first self-driving car of India. The team has been participating in IGVC since its in-

ception in 2011 with the Eklavya

series of vehicles. Eklavya 5.0,

another feather in the cap of the

Research Group is all set to par-

ticipate in the 24th Intelligent

Ground Vehicle Competition

(IGVC), Oakland University.

With new robotic innovations, the

successor of Eklavya 4.0, is a

much more simplified and power-

ful Eklavya 5.0 in all aspects i.e.

mechanical, electrical and soft-

ware.

TEAM ORGANIZATION
The effort behind this project was

put in by a bunch of over fifty

enthusiastic and intellectual un-

dergraduate students from various departments of IIT Kharagpur.

* Associate Professor, Department of Mining Engineering, IIT Kharagpur, C1-100, IIT Campus, Kharagpur 721302.

 2

DESIGN PROCESS
We thoroughly analysed the

failure points of Eklavya 4.0

after its performance in IGVC

2015.

The following diagram de-

scribes the major improve-

ments made in Eklavya 5.0.

Assumptions were made such

as, no skidding of wheels

which meant the velocity ob-

tained by processing signals

from encoder were assumed to

be true, the bot was assumed

to rotate about a centre of cur-

vature which paved the way in

designing the control systems.

The path planning module has been changed completely in order to generate kinematically feasi-

ble trajectories for our bot. Also, the lane navigator has been made more robust and has been test-

ed to work in a number of corner cases.
Taking into consideration the above improvements and assumptions, the design for Eklavya 5.0

was proposed as shown.

MECHANICAL DESIGN

Overview

The Eklavya 4.0 was a front wheel driven

and steered vehicle. However, it had many

shortcomings. It was vulnerable to undue

vibrations. The structure was made up of

wood. Hence, it was prone to lateral vibra-

tions as well as longitudinal vibrations

Attainment of maximum stability by lower-

ing the centre of gravity and reducing the

vibrations were two major concerns while

designing Eklavya 5.0. Initially, the steer-

ing column was connected to the frame through a flat plate. But it was not sufficient to counter

the induced moments from the drive motor. Hence, it was decided to add another link to support

entire dynamic forces acting on the joint. This successfully reduced the longitudinal vibrations

[1]. To improve lane navigation, the height of camera mount was not sufficient in Eklavya 4.0. To

tackle this, we considered the height of the bot and the caster angle of the front wheel and calcu-

lated the optimal height for camera placement to be 5.5 ft. The new camera mount was fabricated

and successfully installed on the robot. Finally, to reduce the transverse vibrations, the design of

the bearing case was modified. It is to be noted that we have not installed any suspension system

in our robot so as to keep the design simple, compatible and light weight.

 3

STEERING COLUMN
Drive motor is attached to the steering column which causes both radial and axial loading. Con-

sidering this, we calculated the angle of inclination of the steering column with the horizontal to

be 20 deg. This lead to less radial loading which further lowered the torque requirement for steer-

ing the vehicle. Additionally, the steering column is designed to be self-centring which helps the

bot to move forward easily.

Figure 3. Moment diagram of the steering column. Figure 4. Manufactured Steering Col-

umn

Ra = Reaction due to upper bearing Rb = Reaction due to lower bearing
F1 = Weight acting on steering stem Mm = Torque provided by motor
Mw = Torque due to weight of motor F2 = Force due to acceleration
Rc = Reaction from tire

Table 2.Dynamic Analysis of Steer Column

Scenario F1 F2 Theta Total

length

Shear (Max) Bending Mo-

ment

Dynamic State (Max

torque=120Nm)
34.2 99 70 .25 64 54

Stationary State 34.2 0 70 .25 34.202 8.55

During a jerk (5 cm at 10

miles/hour)
34.2

02
99 70 .25 1050 250

Stress = My/I

For our dimensions, we have I = 1.17 x 10-8, Maximum moment = 53.54

Nm, Stress will be maximum at outer face, y = 3 cm, Stress = 58.5 MPa

Conclusion:

Fork length: 25 cm, Angle with horizontal: 70 degrees, Length of steering

 4

T stem: 20 cm, Diameter of Fork: 3 cm, Thickness of fork: 3 mm

This matches with steering column of Motorbikes steering column. Therefore, steering stem and

forks of Hero Honda Aviator scooter were used.

The Reduction of Longitudinal Vibration
The longitudinal vibration [1] was reduced with the introduction of a new rod. This is evident

from the following force analysis in Ansys.

Figures: When load is applied with the support rod and when load is applied when there is no rod

WHEEL HUB DESIGN
Front Wheel
16 inch wheel with an attached hub motor is used for translation. It is attached to the fork through

U-clamps. Load transfer is done effectively through two mild steel couplers.
Rear Wheels
For our design, we have chosen tapered roller bearings because they are capable of carrying loads

in both axial and radial directions and discards the need for thrust bearings which creates a prob-

lem in disassembling the robot. We can arrange a pair of tapered roller bearings in three ways-
"Face to face", "Back to back" and "Tandem (parallel)”. Face to face type has less support width

so it does not provide rigid support. This arrangement is less suitable to support tilting moments

due to its lower stiffness. In our case we used a pair of tapered roller bearings adjusted in back to

back arrangements as it provides enough rigid support to handle the weight transferred on wheel

hub.

Figure 5. Roller bearing Figure 6. ANSYS stress analysis of front wheel.

ELECTRONIC AND POWER DESIGN

Overview

The electrical system overview is shown in detail in the figure given below.

 5

Figure 7. Electronic Architecture

Power Distribution

The power distribution flow is shown below.

Figure: Power Distribution Flow

Battery Management System
The previous versions of Eklavya faced problems regarding batteries and their management. State

of charge, state of health, estimated time for complete discharge were not monitored and hence

there was a possibility of batteries going into deep cycle, further deteriorating their life [2]. The

main goal of a battery management system is to monitor above stated parameters of batteries for

their safety and take appropriate action for the same.
The battery management system for Eklavya 5.0 continuously monitors the variation of the bat-

tery voltage and accordingly displays the state of charge of each battery on 84 mm x 48 mm dot

matrix LCD screen which has been installed on the robot. The voltage of each battery is propor-

tionally scaled to logic level using potential dividers and is fed as analogue voltage input to the

 6

microcontroller unit, Arduino Nano, which reads the input and displays the state of charge on the

screen accordingly. The current sourced by sensors and motors varies in such a way that total

charge cannot be obtained with the generic methodology. Hence, we resorted to method of esti-

mating the charge left by deriving the discharge curves. Thus, estimating the charge left by ob-

taining the battery voltages itself. The discharge curves of the batteries were derived after ac-

counting various discharge cycles [3].

 Figure 10. Battery monitoring System

SENSORS and ACTUATORS

Sensors Specifications

1. Autonics E80H

Encoders

 10 Bit Resolution

 hollow shaft Quadrature Type

 6 Channel - 4 Output , 2 for Verification

 2. Genius Webcam  120 degrees ultra wide angle view at 30 FPS

 12 MP , 1080p Image view

 Manual Focus with Glass lens

 3. Vectornav VN-

200 INS
 3-axis accelerometer, 3-axis gyrometer, 3-axis magnetometer, bar-

ometric pressure sensor.

 GPS-aided Inertial Navigation System (INS).

 Low power input 0.5 W

 Accurate Signal output owing to Internal Kalman Filtering

 4. Hokuyo UTM-

30LX LIDAR

 Range of 30 m in 270 degree Plane of device

 Millimeter resolution in a 270° arc.

 Accuracy ±50 mm within a range of 0.1-30 m

 7

 Figure 8. Power circuit for sensors Figure 9. BLDC hub motor

Actuators Specifications

1. Brushless DC Hub Motor  Reduces Space consumed by conventional DC motor

 Operating Voltage: - 48V.

 Current :- Max - 9 Amp

 Normal - 7 Amp

 5 Pin hall effect wiring , 3 stator wire

 Speed control with specified Analog value

 2. DC Steer Motor  Inline Motor for compatibility with steering Column

 Operating Voltage :- 12V

 Current :- Max - 15 A

 Normal - 10 A

 Torque :- 100-125 IN-LBS

 12 Bit resolution optical encoder for feedback

 Compatible with Roboteq

CONTROL SYSTEM
The speed control system, curvature control system and an angle control system are the

three main control systems working in Eklavya 5.0. The steering angle control is implemented on

a Roboteq motor controller while the other two controllers are implemented in the C++ code run-

ning on the main computing platform of the robot.

Speed Control System

The speed control system tries to reject the environmental disturbances and tracks the

given speed unit step commands. The control action is actuated using a BLDC hub motor. As

such, the controller is a mixed-signal control system as the BLDC motor runs on analogue voltage

values while the rest of the control system, viz. the controller, the speed measurements and refer-

ence commands are in digital domain. A Digital to Analog Converter (DAC) converts the digital

control input signal to analogue voltage command to control the speed of the BLDC motor. The

speed control is an experimentally tuned PID controller implemented on the C++ code. PID con-

trol scheme is chosen because of its ease of implementation and the degree of freedom of tuning

three parameters to achieve better performance. The speed feedback is obtained using the two

rear wheel encoders.

 8

The experimentally tuned PID control scheme was verified by simulations on MATLAB.

Using system identification techniques [4], a transfer function model was obtained for the BLDC

hub motor. For the obtained transfer function, a PID controller was designed and performance

was simulated on MATLAB.

Angle Control System

Similar to the speed control sys-

tem, the steer angle is controlled

using a PID controller imple-

mented on a Roboteq motor con-

troller. The angle feedback is

obtained using an optical encoder

placed on the shaft of the motor.

The Roborun utility of Roboteq

helps in tuning the performance of the steering angle control system. The following block dia-

gram explains the implemented control scheme. Verification of the results was done using simu-

lations on MATLAB by identifying the parameters of a second order transfer function. The con-

trolled responses were plotted and hence the experimental tuning was verified using simulations

on MATLAB.

Curvature Control System

This is the most

important part of the con-

trol system of Eklavya 5.0

as it tries to follow the

trajectories, the motion

planning algorithm gener-

ates. The radius of curva-

ture of the instantaneous

axis of rotation is calcu-

lated using the translation

speed (calculated as the

average of the two rear

wheel speeds measured by the encoders) and the angular velocity data given by the Inertial

Measurement Unit (IMU). This feedback is compared with the desired radius of curvature given

by the planner and an experimentally tuned PID controller is implemented on the C++ code. The

following block diagram describes the control system in detail. The curvature control system

feeds the angle and speed control systems as shown with their respective reference commands.

We have assumed that there is either no or negligible coupling between the three control systems.

Safety systems and their integration

In order to ensure that the sensors sensitive to the sudden voltage change are always electrically

safe, the power circuit of all the components are designed in such a way by using proper voltage

regulators, Buck converters, capacitors, diodes and fuses that always clean dc voltage is supplied.

The fuses of proper rating are used, along with it LED indicators, which indicate any power cut.

 9

Battery Management System ensures that the batteries never enter deep discharge mode by alarm-

ing the user at lower voltages.

Overview of Software
The following block diagram gives an overview of the software architecture of the robot.

Obstacle Detection and Avoidance

The white strips in the obstacles and the white ladders interfere with the lane detection

algorithm as they occur as false positives and thus have to be removed before lane detection. This

problem was not dealt with in Eklavya 4.0 and has been successfully solved in the new version as

follows. First, median filter is applied. Then we apply Canny edge detection on this image. As,

after edge detection, very few obstacle points will be left, they won’t interfere in the lane naviga-

tion algorithm. Hence, by this new approach we have bypassed the obstacle interference in a very

novel and easy way. Then erosion and dilation is applied on the image to filter out random noises.

Along with this, Circular Hough Transforms are used to detect and remove potholes.

Software Strategy and Path Planning

High Level Planner

The high level planner

of Eklavya 5.0 has been imple-

mented using the concept of

FSM (finite state machine). The

two most important states of our

FSM are - lane navigator state

and waypoint navigator state.

The transition between states is

governed by the following ob-

servations of the bot
1. If the bot is not in no man’s land and can see the lanes, we switch to the lane navigator

state of the FSM.

2. When the FSM is in its lane navigator state and distance of a waypoint is less than a pre-

defined threshold, then the FSM switches to waypoint navigator state.

Motion Planning
 In Eklavya 4.0, we had used the ROS move_base node for the purpose of path planning.

However, that planner didn’t work well in our case as it didn’t always generate kinematically fea-

sible trajectories.

 10

One of the most important advantages of this planer compared to many other planners is

that plans a kinematically feasible path which out bot can achieve. Also, it is a lot faster com-

pared to planners which employ algorithms like Dijkstra’s and A*. Our planner has compromised

on optimality for speed which is acceptable for this purpose.

 Figure 13. TP-RRT- an overview Figure 14. Path planned by TP-RRT

In Eklavya 5.0, the team has used the TP Space-RRT algorithm [5] in the planner. The

TP-RRT planner first converts the entire frame into TP (trajectory parameter) space
[6] Wherein the RRT (rapidly exploring random tree) algorithm is used. The algorithm incremen-

tally builds a tree of collision-free trajectories rooted at the initial condition. Hence, RRT is ini-

tialized as a tree, including the initial state as its unique vertex and no edges. Next, several fami-

lies of trajectories (PTGs-Parameterized Trajectory Generators) are employed while attempting to

grow the tree using random intermediate targets .The most suitable path is chosen after the tree

reaches the target node along the expanded tree keeping in mind the kinematic constraints of the

bot. In our code, we don’t directly apply the RRT algorithm to the free-object space. We further

filter it to a space in which the states of RRT are such that each one of them can be achieved by

the bot and this is how the bot gets its holonomic nature.

Map Generation

Localization

We have localized our bot using an extended Kalman filter algorithm (same as previous

year) by estimating x, y, θ (yaw) and their differentials from IMU, GPS and encoder data [7]. Last

year we were facing problems while integrating GPS data into the filter, especially when the data

was inaccurate in areas like Kharagpur, India. This time we tuned the covariance matrices and

used an average of 100 iterations GPS data to set the origin in the GPS frame. With this we were

able to achieve errors as low as 0.2m (in x and y directions) after following a closed loop path of

perimeter 400m. For our purpose we have used two frames. The bot is localized in the ‘odom’

frame (starting point is taken as the origin and the frame drifts over time due to odometry errors).

The bot frame is assumed to be ‘base_link’ in our case (i.e. what the bot sees at a particular in-

stant).

 11

 Figure 14. Data from encoders Figure 15. Data from GPS

 (drift error being integrated over time) (axis rotated 90o)

Figure 16. Filtered data using EKF

Mapping

For both lane and waypoint, we use LIDAR data to find out the obstacle around the vehi-

cle space. First we convert the LIDAR data to a point cloud in ‘base_link’ frame. For the cost

map of the lane navigator and waypoint navigator, we fuse the Point Cloud of the lanes with the

LIDAR data and finally convert the resulting point cloud to ‘odom’ frame.

Goal Selection and Path Generation

Lane Detection

We have removed the grassy portions of the image with a SVM classifier [8] where fea-

tures for learning were taken as a kernel of an 8×8 ROI of the image. This kernel was classified as

grass or non-grass using a polynomial SVM classifier.
As shadows change the HSV values of regions slightly, when the effects became more

prominent the classifier was unable to produce satisfactory results. So, a shadow removal tech-

nique was used. The image was first converted to the YCrCb colour space all pixels with intensity

less than 1.5 times the standard deviation of Y channel were classified as shadow pixels and the

image was converted into a binary one [9].
Curves were generated by the classifier based on results over shadow removed images.

Although this gives a few false positives, most of the lanes are classified as non-grass. Also, grass

offered a more uniform patch compared to lanes as the lane portions in the image varied with var-

iations in brightness and lightning conditions. Lanes also exhibit non-uniform thickness. Both the

thresholding and Hough line method could still output false lanes, especially in thresholding as it

 12

is very difficult to find fine threshold values. So we incorporated Random Sample Consensus

(RANSAC) to detect lanes. On rigorous testing, RANSAC was found to be a reliable technique

for curve-fitting. Finally the image was transformed to a top down view using inverse perspective

transform (IPT).

 Figure 17. Detection of lanes after removing noise

We further observed that the height of the camera has to be increased as compared to Eklavya 4.0

to account for the fact that obstacles blocked the view of lanes behind it. Also, since classifying

single lanes as right or left and giving a target is less favourable than the double lane case we

have used a 120o FOV camera instead of the 75o FOV camera used last year.

 Figure 18. Results from 75o FOV camera Figure 19. Results from 120o FOV camera

Flag detection

The flags are detected using HSV thresholding for red and blue colours. The algorithm is

provided with parameters that can be modified dynamically. This helps us to calibrate to the ex-

ternal environment quickly.

Potholes detection

This module is being planned to be imple-

mented using circular Hough transform, which de-

tects circles from points on the circumference and

selects the maxima from the accumulator matrix.

Figure 20. Result for Potholes detection

 13

Lane Navigation

The lane navigation algorithm has been explained with the help of following flow chart.

 Figure 21. Flow diagram to determine target for Lane navigation

 14

Waypoint Navigation

The Waypoint navigator first goes to the nearest

waypoint and then traverses all the waypoints by

visiting the nearest one at each step. When the

last waypoint is reached and the lanes are detect-

ed, FSM switches the state to Lane navigator.

Additional Creative Concepts
For lane navigation, we used the concept of

“Tracking” to distinguish between single and

double lanes and to further distinguish between

right and left lane. We keep a track of the previ-

ous frame at every instant and on the point of

transition from double lanes to single lane, we

compare the distance of the single lane from

both the lanes of the previous frame and check

whether it is right or left.

Figure 22. Waypoint navigator Flowchart

We have applied Canny edge detection on the image before applying quadratic curve fitting. This

makes sure that the white portion in the obstacles doesn’t interfere in the curve fitting part. To

minimize the errors due to GPS, instead of calculating the target at every step using the fluctuat-

ing GPS data, we have converted all the waypoint targets into odom frame in the first iteration

itself by using the GPS coordinate of the origin of the odom frame.

Simulation

We use Gazebo as the simula-

tion software for our vehicle.

We have constructed a close to

real representation of the robot

as well as the IGVC course. To

simulate real life robustness of

our code, we have added noise

to the readings of the sensors.

The IGVC course has been real-

istically portrayed so as to test

our code on the actual course.

Figure 20. Simulation Arena - Gazebo

 15

Constructional Features of the Simulation

The SolidWorks model of our bot has been imported as a mesh in Gazebo and the sensors used in

our bot have been simulated with errors as per specification when available or with experimental

data. We wrote the controller plugin specifically for our front steered bot to convert command

velocity into steer angle and rpm of the wheels.

Failure Modes and Resolutions

 Lane Detection: In lane detection, the code fails in the case where proposed target lies

on an obstacle. We have resolved the issue by taking input from the LIDAR and checking

whether the goal lies on an obstacles or not and adjust the final goal accordingly.

 Localization: The bot experiences a drift in its odometry in case of wheel slippage. For

the correct localization of the bot using GPS data, there should be adequate number of

satellites present (i.e. greater than 4). Also, the IMU unit should be at the centre of the bot

in ‘base_link’ frame, which in our case is the centre of back wheels.

 TP-RRT Planner: The planner does not alter the path of bot in presence of dynamic ob-

stacles.

 Power Management: Failure mode LED indicators are placed at the power source of

BLDC motor, Encoder channels and Steer Motor corresponding to fuse blow, low battery

and short circuit.

 Control System: If the tuned PID fails, PID can be re-tuned easily by changing the pa-

rameters in a launch file.

 Plate coupler failure-Steer column will break from the main frame if the normal stress

in the bolts exceed 19.4 MPa.

 The bearing will fail in case of rusting, high spots in cup seats, corrosion, etc.

Performance Testing

 Max Acceleration: 2.548 m/s2

 Max torque without skidding: 51 Nm

 Average driving force on the bot: 255 N

 Average Motor torque: 18.53 Nm

 Average speed: 5.6 mph.

 Ramp climbing ability at 30 degrees -1.56 m/s2

References
[1] Y. Karim and C. Blanzé. “Vibration reduction of a structure by design and control of a bolted joint”

LMSSC, CNAM, 2 rue Conté, 75003 Paris, France

[2] C. Chen, et.al. “Design and Realization of Smart battery management”

[3] Gerald P. Arada and Elmer R. Magsino “Development of a Power Monitoring System for

Backup Lead-Acid Batteries”

[4] System Identification Toolbox MATLAB

[5] Jose Luis Blanco, Mauro Bellone and Antonio Gimenez-Fernandez. “TP-Space RRT – Kinematic Path

Planning of Nonholonomic Any-Shape Vehicles”. Int J Adv Robot Syst, 2015

[6] Jose-Luis Blanco, Javier González, and Juan Antonio Fernández-Madrigal. “Extending obstacle avoid-

ance methods through multiple parameter space transformations. Autonomous Robots” 2008

[7] Sebastian Thrun, “Probabilistic Robotics”

[8] Zhou, Shengyan, et al. "Road detection using support vector machine based on online learning and

evaluation."Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE, 2010.

[9] Deb, Kaushik, and Ashraful Huq Suny. "Shadow Detection and Removal Based on YCbCr Color

Space." Smart CR 4 (2014): 23-33.

