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INTRODUCTION 

Team Autonomous Ground Vehicle (AGV), under the ambit of Center for Robotics, IIT Kharag-

pur, has been pioneering the autonomous ground vehicle technology with the ultimate aim of de-

veloping the first self-driving car of India. The team has been participating in IGVC since its in-

ception in 2011 with the Eklavya 

series of vehicles. Eklavya 5.0, 

another feather in the cap of the 

Research Group is all set to par-

ticipate in the 24th Intelligent 

Ground Vehicle Competition 

(IGVC), Oakland University. 

With new robotic innovations, the 

successor of Eklavya 4.0, is a 

much more simplified and power-

ful Eklavya 5.0 in all aspects i.e. 

mechanical, electrical and soft-

ware.  

TEAM ORGANIZATION 
The effort behind this project was 

put in by a bunch of over fifty 

enthusiastic and intellectual un-

dergraduate students from various departments of IIT Kharagpur.  

                                                      

* Associate Professor, Department of Mining Engineering, IIT Kharagpur, C1-100, IIT Campus, Kharagpur 721302. 
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DESIGN PROCESS 
We thoroughly analysed the 

failure points of Eklavya 4.0 

after its performance in IGVC 

2015. 

The following diagram de-

scribes the major improve-

ments made in Eklavya 5.0.  

Assumptions were made such 

as, no skidding of wheels 

which meant the velocity ob-

tained by processing signals 

from encoder were assumed to 

be true, the bot was assumed 

to rotate about a centre of cur-

vature which paved the way in 

designing the control systems. 

The path planning module has been changed completely in order to generate kinematically feasi-

ble trajectories for our bot. Also, the lane navigator has been made more robust and has been test-

ed to work in a number of corner cases. 
Taking into consideration the above improvements and assumptions, the design for Eklavya 5.0 

was proposed as shown.  

 
MECHANICAL DESIGN 

Overview 

The Eklavya 4.0 was a front wheel driven 

and steered vehicle. However, it had many 

shortcomings. It was vulnerable to undue 

vibrations. The structure was made up of 

wood. Hence, it was prone to lateral vibra-

tions as well as longitudinal vibrations 

Attainment of maximum stability by lower-

ing the centre of gravity and reducing the 

vibrations were two major concerns while 

designing Eklavya 5.0. Initially, the steer-

ing column was connected to the frame through a flat plate. But it was not sufficient to counter 

the induced moments from the drive motor. Hence, it was decided to add another link to support 

entire dynamic forces acting on the joint. This successfully reduced the longitudinal vibrations 

[1]. To improve lane navigation, the height of camera mount was not sufficient in Eklavya 4.0. To 

tackle this, we considered the height of the bot and the caster angle of the front wheel and calcu-

lated the optimal height for camera placement to be 5.5 ft. The new camera mount was fabricated 

and successfully installed on the robot. Finally, to reduce the transverse vibrations, the design of 

the bearing case was modified. It is to be noted that we have not installed any suspension system 

in our robot so as to keep the design simple, compatible and light weight.  
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STEERING COLUMN 
Drive motor is attached to the steering column which causes both radial and axial loading. Con-

sidering this, we calculated the angle of inclination of the steering column with the horizontal to 

be 20 deg. This lead to less radial loading which further lowered the torque requirement for steer-

ing the vehicle. Additionally, the steering column is designed to be self-centring which helps the 

bot to move forward easily. 

 
Figure 3. Moment diagram of the steering column.                Figure 4. Manufactured Steering Col-

umn             

Ra = Reaction due to upper bearing          Rb = Reaction due to lower bearing 
F1 = Weight acting on steering stem                     Mm = Torque provided by motor 
Mw = Torque due to weight of motor          F2 = Force due to acceleration 
Rc = Reaction from tire 

Table 2.Dynamic Analysis of Steer Column 

Scenario F1 F2 Theta Total 

length 

Shear (Max) Bending Mo-

ment 

Dynamic State (Max 

torque=120Nm) 
34.2 99 70 .25 64 54 

Stationary State 34.2 0 70 .25 34.202 8.55 

During a jerk (5 cm at 10 

miles/hour) 
34.2

02 
99 70 .25 1050 250 

 

Stress = My/I 

For our dimensions, we have I = 1.17 x 10-8, Maximum moment = 53.54 

Nm, Stress will be maximum at outer face, y = 3 cm, Stress = 58.5 MPa  

Conclusion: 

Fork length: 25 cm, Angle with horizontal: 70 degrees, Length of steering 
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T stem: 20 cm, Diameter of Fork: 3 cm, Thickness of fork: 3 mm 

This matches with steering column of Motorbikes steering column. Therefore, steering stem and 

forks of Hero Honda Aviator scooter were used. 

The Reduction of Longitudinal Vibration  
The longitudinal vibration [1] was reduced with the introduction of a new rod. This is evident 

from the following force analysis in Ansys. 

            
 
Figures: When load is applied with the support rod and when load is applied when there is no rod  

 

WHEEL HUB DESIGN 
Front Wheel 
16 inch wheel with an attached hub motor is used for translation. It is attached to the fork through 

U-clamps. Load transfer is done effectively through two mild steel couplers.  
Rear Wheels 
For our design, we have chosen tapered roller bearings because they are capable of carrying loads 

in both axial and radial directions and discards the need for thrust bearings which creates a prob-

lem in disassembling the robot. We can arrange a pair of tapered roller bearings in three ways- 
"Face to face", "Back to back" and "Tandem (parallel)”. Face to face type has less support width 

so it does not provide rigid support. This arrangement is less suitable to support tilting moments 

due to its lower stiffness. In our case we used a pair of tapered roller bearings adjusted in back to 

back arrangements as it provides enough rigid support to handle the weight transferred on wheel 

hub. 

 
Figure 5. Roller bearing                               Figure 6. ANSYS stress analysis of front wheel. 

 

ELECTRONIC AND POWER DESIGN 

 

Overview 

The electrical system overview is shown in detail in the figure given below. 
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Figure 7. Electronic Architecture 

 

 
Power Distribution 

The power distribution flow is shown below. 

Figure: Power Distribution Flow 

 
Battery Management System 
The previous versions of Eklavya faced problems regarding batteries and their management. State 

of charge, state of health, estimated time for complete discharge were not monitored and hence 

there was a possibility of batteries going into deep cycle, further deteriorating their life [2]. The 

main goal of a battery management system is to monitor above stated parameters of batteries for 

their safety and take appropriate action for the same. 
The battery management system for Eklavya 5.0 continuously monitors the variation of the bat-

tery voltage and accordingly displays the state of charge of each battery on 84 mm x 48 mm dot 

matrix LCD screen which has been installed on the robot. The voltage of each battery is propor-

tionally scaled to logic level using potential dividers and is fed as analogue voltage input to the 
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microcontroller unit, Arduino Nano, which reads the input and displays the state of charge on the 

screen accordingly. The current sourced by sensors and motors varies in such a way that total 

charge cannot be obtained with the generic methodology. Hence, we resorted to method of esti-

mating the charge left by deriving the discharge curves. Thus, estimating the charge left by ob-

taining the battery voltages itself. The discharge curves of the batteries were derived after ac-

counting various discharge cycles [3]. 

 
          Figure 10.  Battery monitoring System 

 

SENSORS and ACTUATORS 

 

Sensors Specifications 

1. Autonics E80H 

Encoders 

 10 Bit Resolution  

 hollow shaft Quadrature Type  

 6 Channel - 4 Output , 2 for Verification 

     2.  Genius Webcam  120 degrees ultra wide angle view at 30 FPS 

 12 MP , 1080p Image view 

 Manual Focus with Glass lens 

     3.  Vectornav VN-

200 INS 
 3-axis accelerometer, 3-axis gyrometer, 3-axis magnetometer, bar-

ometric pressure sensor. 

 GPS-aided Inertial Navigation System (INS). 

 Low power input 0.5 W  

 Accurate Signal output owing to Internal Kalman Filtering 

     4.  Hokuyo UTM-

30LX LIDAR 

 Range of 30 m in 270 degree Plane of device 

 Millimeter resolution in a 270° arc. 

 Accuracy  ±50 mm within a range of 0.1-30 m 
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                 Figure 8. Power circuit for sensors                           Figure 9. BLDC hub motor 
 

Actuators Specifications 

1. Brushless DC Hub Motor  Reduces Space consumed by conventional DC motor 

 Operating Voltage: - 48V. 

 Current :- Max - 9 Amp 

      Normal - 7 Amp 

 5 Pin hall effect wiring , 3 stator wire 

 Speed control with specified Analog value 

     2.    DC Steer Motor  Inline Motor for compatibility with  steering Column 

 Operating Voltage :- 12V 

 Current :- Max - 15 A 

      Normal - 10 A 

 Torque :- 100-125 IN-LBS 

 12 Bit resolution optical encoder for feedback 

 Compatible with Roboteq 

 

CONTROL SYSTEM 
The speed control system, curvature control system and an angle control system are the 

three main control systems working in Eklavya 5.0. The steering angle control is implemented on 

a Roboteq motor controller while the other two controllers are implemented in the C++ code run-

ning on the main computing platform of the robot.  
 
Speed Control System 

The speed control system tries to reject the environmental disturbances and tracks the 

given speed unit step commands. The control action is actuated using a BLDC hub motor. As 

such, the controller is a mixed-signal control system as the BLDC motor runs on analogue voltage 

values while the rest of the control system, viz. the controller, the speed measurements and refer-

ence commands are in digital domain. A Digital to Analog Converter (DAC) converts the digital 

control input signal to analogue voltage command to control the speed of the BLDC motor. The 

speed control is an experimentally tuned PID controller implemented on the C++ code. PID con-

trol scheme is chosen because of its ease of implementation and the degree of freedom of tuning 

three parameters to achieve better performance. The speed feedback is obtained using the two 

rear wheel encoders. 
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The experimentally tuned PID control scheme was verified by simulations on MATLAB. 

Using system identification techniques [4], a transfer function model was obtained for the BLDC 

hub motor. For the obtained transfer function, a PID controller was designed and performance 

was simulated on MATLAB.  
 
Angle Control System 

 

Similar to the speed control sys-

tem, the steer angle is controlled 

using a PID controller imple-

mented on a Roboteq motor con-

troller. The angle feedback is 

obtained using an optical encoder 

placed on the shaft of the motor. 

The Roborun utility of Roboteq 

helps in tuning the performance of the steering angle control system. The following block dia-

gram explains the implemented control scheme. Verification of the results was done using simu-

lations on MATLAB by identifying the parameters of a second order transfer function. The con-

trolled responses were plotted and hence the experimental tuning was verified using simulations 

on MATLAB.  
 
Curvature Control System 

 
This is the most 

important part of the con-

trol system of Eklavya 5.0 

as it tries to follow the 

trajectories, the motion 

planning algorithm gener-

ates. The radius of curva-

ture of the instantaneous 

axis of rotation is calcu-

lated using the translation 

speed (calculated as the 

average of the two rear 

wheel speeds measured by the encoders) and the angular velocity data given by the Inertial 

Measurement Unit (IMU). This feedback is compared with the desired radius of curvature given 

by the planner and an experimentally tuned PID controller is implemented on the C++ code. The 

following block diagram describes the control system in detail. The curvature control system 

feeds the angle and speed control systems as shown with their respective reference commands. 

We have assumed that there is either no or negligible coupling between the three control systems. 
 

Safety systems and their integration 
 
In order to ensure that the sensors sensitive to the sudden voltage change are always electrically 

safe, the power circuit of all the components are designed in such a way by using proper voltage 

regulators, Buck converters, capacitors, diodes and fuses that always clean dc voltage is supplied. 

The fuses of proper rating are used, along with it LED indicators, which indicate any power cut. 
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Battery Management System ensures that the batteries never enter deep discharge mode by alarm-

ing the user at lower voltages.  

 

Overview of Software 
The following block diagram gives an overview of the software architecture of the robot. 

 
Obstacle Detection and Avoidance 

The white strips in the obstacles and the white ladders interfere with the lane detection 

algorithm as they occur as false positives and thus have to be removed before lane detection. This 

problem was not dealt with in Eklavya 4.0 and has been successfully solved in the new version as 

follows. First, median filter is applied. Then we apply Canny edge detection on this image. As, 

after edge detection, very few obstacle points will be left, they won’t interfere in the lane naviga-

tion algorithm. Hence, by this new approach we have bypassed the obstacle interference in a very 

novel and easy way. Then erosion and dilation is applied on the image to filter out random noises. 

Along with this, Circular Hough Transforms are used to detect and remove potholes.  
 

Software Strategy and Path Planning 
 
High Level Planner 

The high level planner 

of Eklavya 5.0 has been imple-

mented using the concept of 

FSM (finite state machine). The 

two most important states of our 

FSM are - lane navigator state 

and waypoint navigator state. 

The transition between states is 

governed by the following ob-

servations of the bot 
1. If the bot is not in no man’s land and can see the lanes, we switch to the lane navigator 

state of the FSM. 

2. When the FSM is in its lane navigator state and distance of a waypoint is less than a pre-

defined threshold, then the FSM switches to waypoint navigator state.  

 
Motion Planning 
 In Eklavya 4.0, we had used the ROS move_base node for the purpose of path planning. 

However, that planner didn’t work well in our case as it didn’t always generate kinematically fea-

sible trajectories. 
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One of the most important advantages of this planer compared to many other planners is 

that plans a kinematically feasible path which out bot can achieve. Also, it is a lot faster com-

pared to planners which employ algorithms like Dijkstra’s and A*. Our planner has compromised 

on optimality for speed which is acceptable for this purpose. 

 

 
      Figure 13. TP-RRT- an overview                  Figure 14. Path planned by TP-RRT 

                            
                                                                                                                                  
In Eklavya 5.0, the team has used the TP Space-RRT algorithm [5] in the planner. The 

TP-RRT planner first converts the entire frame into TP (trajectory parameter) space  
[6] Wherein the RRT (rapidly exploring random tree) algorithm is used. The algorithm incremen-

tally builds a tree of collision-free trajectories rooted at the initial condition. Hence, RRT is ini-

tialized as a tree, including the initial state as its unique vertex and no edges. Next, several fami-

lies of trajectories (PTGs-Parameterized Trajectory Generators) are employed while attempting to 

grow the tree using random intermediate targets .The most suitable path is chosen after the tree 

reaches the target node along the expanded tree keeping in mind the kinematic constraints of the 

bot. In our code, we don’t directly apply the RRT algorithm to the free-object space. We further 

filter it to a space in which the states of RRT are such that each one of them can be achieved by 

the bot and this is how the bot gets its holonomic nature.     
 

Map Generation 
 
Localization 

We have localized our bot using an extended Kalman filter algorithm (same as previous 

year) by estimating x, y, θ (yaw) and their differentials from IMU, GPS and encoder data [7]. Last 

year we were facing problems while integrating GPS data into the filter, especially when the data 

was inaccurate in areas like Kharagpur, India. This time we tuned the covariance matrices and 

used an average of 100 iterations GPS data to set the origin in the GPS frame.  With this we were 

able to achieve errors as low as 0.2m (in x and y directions) after following a closed loop path of 

perimeter 400m. For our purpose we have used two frames. The bot is localized in the ‘odom’ 

frame (starting point is taken as the origin and the frame drifts over time due to odometry errors). 

The bot frame is assumed to be ‘base_link’ in our case (i.e. what the bot sees at a particular in-

stant).  
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                    Figure 14. Data from encoders                        Figure 15. Data from GPS 

            (drift error being integrated over time)                        (axis rotated 90o) 
 

 
 

Figure 16. Filtered data using EKF 
 

Mapping 
 

For both lane and waypoint, we use LIDAR data to find out the obstacle around the vehi-

cle space. First we convert the LIDAR data to a point cloud in ‘base_link’ frame. For the cost 

map of the lane navigator and waypoint navigator, we fuse the Point Cloud of the lanes with the 

LIDAR data and finally convert the resulting point cloud to ‘odom’ frame.  
 

Goal Selection and Path Generation 
 
Lane Detection 

We have removed the grassy portions of the image with a SVM classifier [8] where fea-

tures for learning were taken as a kernel of an 8×8 ROI of the image. This kernel was classified as 

grass or non-grass using a polynomial SVM classifier.  
As shadows change the HSV values of regions slightly, when the effects became more 

prominent the classifier was unable to produce satisfactory results. So, a shadow removal tech-

nique was used. The image was first converted to the YCrCb colour space all pixels with intensity 

less than 1.5 times the standard deviation of Y channel were classified as shadow pixels and the 

image was converted into a binary one [9]. 
Curves were generated by the classifier based on results over shadow removed images. 

Although this gives a few false positives, most of the lanes are classified as non-grass. Also, grass 

offered a more uniform patch compared to lanes as the lane portions in the image varied with var-

iations in brightness and lightning conditions. Lanes also exhibit non-uniform thickness. Both the 

thresholding and Hough line method could still output false lanes, especially in thresholding as it 
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is very difficult to find fine threshold values. So we incorporated Random Sample Consensus 

(RANSAC) to detect lanes. On rigorous testing, RANSAC was found to be a reliable technique 

for curve-fitting. Finally the image was transformed to a top down view using inverse perspective 

transform (IPT).  

 
   Figure 17. Detection of lanes after removing noise 
 

We further observed that the height of the camera has to be increased as compared to Eklavya 4.0 

to account for the fact that obstacles blocked the view of lanes behind it. Also, since classifying 

single lanes as right or left and giving a target is less favourable than the double lane case we 

have used a 120o FOV camera instead of the 75o FOV camera used last year. 
 

 
         

      Figure 18. Results from 75o FOV camera               Figure 19. Results from 120o FOV camera 
 
Flag detection 

The flags are detected using HSV thresholding for red and blue colours.  The algorithm is 

provided with parameters that can be modified dynamically. This helps us to calibrate to the ex-

ternal environment quickly.   
 
Potholes detection  

This module is being planned to be imple-

mented using circular Hough transform, which de-

tects circles from points on the circumference and 

selects the maxima from the accumulator matrix.  
 

 
            

  

 
Figure 20. Result for Potholes detection 
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Lane Navigation 

The lane navigation algorithm has been explained with the help of following flow chart. 
 

 

        Figure 21. Flow diagram to determine target for Lane navigation 
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Waypoint Navigation 
 

The Waypoint navigator first goes to the nearest 

waypoint and then traverses all the waypoints by 

visiting the nearest one at each step. When the 

last waypoint is reached and the lanes are detect-

ed, FSM switches the state to Lane navigator. 
 

Additional Creative Concepts  
For lane navigation, we used the concept of 

“Tracking” to distinguish between single and 

double lanes and to further distinguish between 

right and left lane. We keep a track of the previ-

ous frame at every instant and on the point of 

transition from double lanes to single lane, we 

compare the distance of the single lane from 

both the lanes of the previous frame and check 

whether it is right or left. 
 

 

 

 
 

Figure 22. Waypoint navigator Flowchart 

 
We have applied Canny edge detection on the image before applying quadratic curve fitting. This 

makes sure that the white portion in the obstacles doesn’t interfere in the curve fitting part. To 

minimize the errors due to GPS, instead of calculating the target at every step using the fluctuat-

ing GPS data, we have converted all the waypoint targets into odom frame in the first iteration 

itself by using the GPS coordinate of the origin of the odom frame. 
 

Simulation 
 
We use Gazebo as the simula-

tion software for our vehicle. 

We have constructed a close to 

real representation of the robot 

as well as the IGVC course. To 

simulate real life robustness of 

our code, we have added noise 

to the readings of the sensors. 

The IGVC course has been real-

istically portrayed so as to test 

our code on the actual course. 
 

 

Figure 20. Simulation Arena - Gazebo  
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Constructional Features of the Simulation 

The SolidWorks model of our bot has been imported as a mesh in Gazebo and the sensors used in 

our bot have been simulated with errors as per specification when available or with experimental 

data. We wrote the controller plugin specifically for our front steered bot to convert command 

velocity into steer angle and rpm of the wheels.  
 
Failure Modes and Resolutions 

 Lane Detection: In lane detection, the code fails in the case where proposed target lies 

on an obstacle. We have resolved the issue by taking input from the LIDAR and checking 

whether the goal lies on an obstacles or not and adjust the final goal accordingly. 

 Localization: The bot experiences a drift in its odometry in case of wheel slippage. For 

the correct localization of the bot using GPS data, there should be adequate number of 

satellites present (i.e. greater than 4). Also, the IMU unit should be at the centre of the bot 

in ‘base_link’ frame, which in our case is the centre of back wheels.  

 TP-RRT Planner: The planner does not alter the path of bot in presence of dynamic ob-

stacles. 

 Power Management: Failure mode LED indicators are placed at the power source of 

BLDC motor, Encoder channels and Steer Motor corresponding to fuse blow, low battery 

and short circuit. 

 Control System: If the tuned PID fails, PID can be re-tuned easily by changing the pa-

rameters in a launch file.  

 Plate coupler failure-Steer column will break from the main frame if the normal stress 

in the bolts exceed 19.4 MPa. 

 The bearing will fail in case of rusting, high spots in cup seats, corrosion, etc. 

 
Performance Testing 

 Max Acceleration: 2.548 m/s2  

 Max torque without skidding: 51 Nm  

 Average driving force on the bot: 255 N  

 Average Motor torque: 18.53 Nm  

 Average speed: 5.6 mph. 

 Ramp climbing ability at 30 degrees -1.56 m/s2 
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