
Optimal visual servoing of a ground robot following an aerial object using a
Pan-Tilt-Zoom (PTZ) camera

AAAI Press
Association for the Advancement of Artificial Intelligence

2275 East Bayshore Road, Suite 160
Palo Alto, California 94303

Abstract

In this paper, we describe a novel method of visually follow-
ing/tracking a flying target by a ground robot, equipped with
a Pan-Tilt-Zoom (PTZ) camera. The local planning task is
formulated as a nonlinear optimization problem. A major
contribution of this paper is that obstacle avoidance, robot
motion and camera orientation are all solved in a single opti-
mization problem. The entire code architecture has been de-
scribed. Extensive results have been demonstrated in a ROS-
based simulation. Finally, a real-world implementation is de-
scribed along with some experimental results. The described
architecture is shown to be performing satisfactorily in both
cluttered and non-cluttered environments.

1 Introduction
Vision-based robotics has been one of the major research
areas for the last few decades. A vision sensor accounts
for a very versatile feedback instrument for a wide vari-
ety of robot control and manipulation problems. There are
a large number of applications involving vision-based sys-
tems, ranging from self-driving cars to home automation. A
very important subdomain of these applications is dynamic
scene perception, which is a key challenge for all kind of
autonomous robot operations in dynamic environments. Ro-
bust following of moving objects in scenes is vital for sev-
eral applications, for example: a robot butler serving a per-
son (Srinivasa et al. 2012) etc. The problem is particularly
challenging because of randomness in motion of the target,
which may lead to sub-optimal tracking performance or even
absolute failure in many cases of robot’s motion. In addition,
the environment for such an application is usually not free
of obstacles, which means the local planner needs to model
them as well. The problem becomes even more complex
when the motion of the object to be tracked is in 6 dimen-
sions (x,y,z, yaw, pitch, roll), for example: a flying quadro-
tor that needs to be followed by a ground robot. Motion in a
plane (x, y, θ) is usually not enough to feasibly follow such
an object.

We propose the use of a pan-tilt-zoom (PTZ) dome cam-
era for tracking such an object, which is a regular camera
mounted on a 2DoF rotating platform, with capability of

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

zooming into targets and autofocus. Such cameras are usu-
ally used for CCTV and surveillance purposes. However,
if rigidly attached to a mobile ground robot, such a cam-
era adds a great deal of flexibility to the tracking system,
alleviates the effect of slow ground robot dynamics and ex-
pands the field-of-view (FOV) of the robot by a huge fac-
tor (Rohmer et al. 2010). However, inclusion of additional
degrees-of-freedom in the vision system means that local
planning and control of the robot becomes much more pro-
nounced and challenging as a problem.

In real world situations, the environment around the robot
tracking the object is usually not empty, rather it is populated
by obstacles. An algorithm that might perform really well in
absence of obstacles, let’s say in simulation, may not work at
all in real life due to the ever-present risk of a collision dur-
ing tracking. Hence, inclusion of dynamic obstacle avoid-
ance using LiDAR (Light Detection And Ranging) scanner
range data in the aforementioned optimization problem is
proposed, to enable realistic tests in cluttered environments.

Thus, the contributions of this paper can be summarized
as threefold: 1) Formulation of the moving object track-
ing/following problem as a single nonlinear optimization
problem which models both camera and vehicle dynam-
ics; 2) Dynamic obstacle avoidance for experiments in real
life environments; 3) Proposal of a new method of UGV
(Unmanned Ground Vehicle) teleoperation in coordinated
UAV(Unmanned Aerial Vehicle)-UGV experiments. To the
best of our knowledge, this is the first work that solves all
the aforementioned problems.

The paper is organized as follows: In section 3, the con-
ventions and symbols used throughout the paper are listed.
The entire optimization problem is described in sections 4
and 5. Results of the algorithm on a simulated robot, across
various different kinds of environments, are shown in sec-
tion 6. Finally, the real-life test setup and corresponding
observations are noted in section 7 and finally conclude the
paper in section 8.

2 Related Work
A lot of work has been done on visual object tracking using
mobile robots. In (Jung and Sukhatme 2004) and (Jung and
Sukhatme 2010), the authors have proposed an algorithm
for tracking objects by simultaneously estimating robot ego-
motion using image features, and detecting moving parts in



image using a particle filter. This leads to very robust track-
ing performance for objects in the ground plane. The algo-
rithm is demonstrated on multiple types of vehicles. But, the
methodology will not succeed when the object to be tracked
is airborne, as the robot has no means of changing its orien-
tation about the pitch and roll axes.

Pan-Tilt cameras have been used for tracking objects in
many previous works. In (Park et al. 2011), the authors used
a pan-tilt camera for visual servoing of a mobile robot to-
wards a static target while moving on an inclined surface.
In (Yu, Wu, and Lin 2010), the authors do track a moving
object using a robot equipped with a PTZ camera. The robot
motion command assumes that the object is visible in the
ground plane, and no generalizations have been proposed
for tracking a moving object not on the ground plane.

There are several works that implement track-
ing/following of ground robots using aerial vehicles (),
or formation control (Kumar and Michael 2012) of aerial
robots. In fact, the problem statements of autonomous
quadcopter landing on a mobile robot (Falanga et al. 2017)
and coordinated UAV-UGV exploration (Delmerico et
al. 2017) (Michael et al. 2014) are extensively studied.
However, in all these works, a UAV is the follower, and
not a kinematically constrained UGV. This is because the
3 degrees of freedom of the UGV is not enough to track a
UAV feasibly.

3 Notations and Assumptions
Throughout this paper, w(.) is considered as the world
frame, b(.) as the body frame and c(.) as the camera frame.
n
mT represents the 4x4 transformation matrix from frame m
to frame n in homogeneous coordinate system. mP repre-
sents a position (usually of the target in this paper) in coor-
dinate frame m, and the corresponding position in frame n
is given by nP =nm T ×m P , where mP and P are both in
homogeneous coordinates. m

′
(.) refers to frame m updated

after an optimization step.
A right handed coordinate system has been used at all

times. The direction the robot is facing, is considered as
its x-axis, the direction perpendicular to the ground plane is
considered as the z-axis and the y-axis is given by the direc-
tion to the left of the robot. This is demonstrated in figure 1.
All counterclockwise rotations are taken as positive.

A right handed camera coordinate system is assumed. A
pinhole camera model is assumed, and it is assumed that all
lens distortions are taken care of after calibration and undis-
tortion steps before the main algorithm.

The following simplifying assumptions have been made
during this work:

• The ground plane is flat and the ground robot never leaves
the ground plane.

• Reliable odometry information about the robot’s position
with respect to its starting position is available.

• Accurate extrinsic transformation matrices between sen-
sor frames and intrinsic calibration of the camera param-
eters are available.

X

Y

Z

Figure 1: The coordinate system for the ground robot

• The focus of the PTZ camera always stays at the same
point, regardless of orientation. Thus the rotation is al-
ways about the focus. This simplifies the problem a lot,
by converting all pan-tilt motions to pure rotations about
the fixed focus.

4 Optimization Problem Formulation
A ground robot which has a LiDAR scanner and a PTZ cam-
era is considered, both of which are the data input sources
to the optimization problem. The presence of an odometry
source (which does not have to be error-free) is assumed.
The odometry souce constantly gives the robot’s orientation
in ground plane, with respect to a fixed direction (considered
as the north direction in this paper). All the errors caused due
to the curvature of the Earth and the shift of the magnetic
pole have been neglected. Most Inertial Measurement Units
(IMUs) that have a magnetic compass, usually provide re-
liable data about the robot’s orientation in the ground plane
with respect to north direction, through hardware-based sen-
sor data fusion. The frame of reference of the odometry al-
gorithm is chosen to coincide with the body frame of the
robot.

4.1 Data Preprocessing
Range Data A LiDAR scanner outputs data in the form
of a 2-dimensional or 3-dimensional point cloud, which is a
collection of data points in space. In this paper, only the 2-
dimensional data of the LiDAR is used. The data points’ dis-
tances and angles are measured from the centre of the sen-
sor.The data points are first transfomed from LiDAR coordi-
nate system to body coordinate system. This accounts for a
pure translation transformation. The large number of points
in the point cloud, if all directly added as residuals in the
optimization problem, will slow it down quite a bit. Thus,
the raw 2-dimensional point cloud is first segmented into
meaningful line segments and arcs. The raw point cloud is
first converted into Euclidean clusters following the method
described in (Rusu 2010), using an implementation in the



Figure 2: The raw 2D point cloud (top right) is segmented into line segments and clusters. Notice the arcs (which represent the
clusters) leaving out sparse data points (bottom right).

Point Cloud Library (PCL) (Rusu and Cousins 2011). The
algorithm returns a list of clusters of a minimum size, all
of which are further processed using the steps described in
Algorithm 1

Algorithm 1: Line segments and arcs extraction
Data: A set of N cluster points
Result: List of line segments and arcs

1 if cluster size ≤ minimumsegmentclustersize then
2 Extract the arc parameters of the cluster;
3 Find the equation of line connecting the extreme points

of the cluster;
4 Find the the point in the cluster farthest from the line

and count inliers;
5 if proportion of inliers ≥ threshold then
6 Store line segment;
7 else
8 Create two new clusters separated by the farthest

point from the line;
9 Run the same algorithm recursively on the two new

clusters;
10

The result of the segmentation algorithm is shown in fig-
ure 2. The extracted m line segments and n arcs are then
passed as data to the optimization problem, in the form
[L1, L2, . . . , Lm, C1, C2, . . . , Cn].

Each Li consists of the 2D coordinates of the start and
end points of the line segment, in the body frame. Since the
small-sized clusters are modeled as arcs of a circle, each Ci
consists of a radial distance, width of the arc representing
the cluster and its bearing angle in the body frame.

Image Data After the image data is received from the
PTZ camera, it is rectified according to known distortion
parameters. The image is then passed through the detec-
tion pipeline. The focus and zoom levels of the camera are
kept as constant. The optimization problem is not sensitive
to the type of object being tracked, but it is assumed that
the size of the object is known and hence also its 3D coor-
dinates camera frame, cP can be estimated from the image
processing pipeline. For testing, a fiducial marker was used
as a target, because not only does it facilitate high detection
accuracy, but it also enables finding the 6DoF pose of the
target, which will be beneficial for all future work. ArUco
(Garrido-Jurado et al. 2014) library in OpenCV is chosen
to perform the detection and pose estimation of the target.
The marker size is chosen to be 6x6 and was generated us-
ing the library itself. The output of the detection step is the
3D coordinates of the target in camera coordinates. This
front-end can easily be replaced for any type of target, be
it a coloured ball, a human, or any other object whose size
is known. Another noteworthy point is that the algorithm is
not very sensitive to the accuracy of detection.

4.2 Optimization Problem Variables
The robot’s target 2D position (dx,dy,dθ) in current body
frame, and the absolute pan-tilt angles (p,t), are chosen as
the optimization variables in this problem. The pan and tilt
angles are restricted to be in range (−π

2 , π
2 ) and (0,π) re-

spectively. All the residuals and Jacobians are calculated
with respect to these 5 variables. The residuals used are de-
scribed in the next few sections.

4.3 Range Data Residuals
Two separate type of residuals are calculated for line seg-
ments and arcs.



Line Segment Residual The target of this block of opti-
mization is to incentivize the robot to stay away from obsta-
cles. Positions close to obstacles should be heavily penal-
ized, and also positions behind the line segment. By behind,
it is meant that the point is on the opposite side of the line
segment as the robot, but in the same cone subtended on the
line by (0,0). Since a LiDAR scanner only calculates dis-
tances based on the first contact of the LASER beam with a
surface, there is no way of knowing what is behind the obsta-
cle. Hence, to avoid ambiguity, all points shadowed by the
line segment are considered as inaccessible areas, which are
heavily penalized. The error should ideally reduce really fast
as the point moves away from the obstacle, so an exponen-
tial kernel is chosen. A plot of the error can be seen in figure
3. As evident from the plot, the function has a constant high
value when the distance is negative, and decreases exponen-
tially as distance increases. Here distance is defined as the
minimum euclidean distance between the point (dx, dy) and
the line segment (see equation 1)

line distance = signed euclidean dist((dx, dy),

median(linestart, lineend, proj(dx, dy))) (1)

where proj(dx, dy) is the perpendicular projection of the
point (dx, dy) on the line segment. The median operation
refers to finding the point that lies between the other two
points. Signed euclidean distance denotes the euclidean dis-
tance with a sign being negative if (dx, dy) lies in the cone
subtended by (0,0) on the line segment and on the opposite
side of the line segment as (0,0), positive otherwise. Finally,
the residual can be written using equation (2)

residual =

{
107, line distance ≤ 0

107 × e−5×line distance) otherwise.
(2)

Arc Residual Once again, it is desirable to be as far away
from the arcs as possible. In the case of arcs, behind means
points which are in the same sector as the arc but have more
radial distance from the centre of the circle which the arc is
part of. The same cost function as figure 3 is chosen, with a
change in definition of distance, defined by equation (3)

arc distance = signed euclidean dist((dx, dy), arc)
(3)

Signed euclidean distance denotes regular euclidean dis-
tance, with a sign being negative if (dx, dy) lies in the sec-
tor subtended by the arc on (0,0) and on the opposite side
of the arc as (0,0), positive otherwise. Finally, the resid-
ual can be written in the same fashion as equation 2, with
line distance being replaced by arc distance.

4.4 Image Reprojection Residual
The image reprojection residual minimizes the distance of
the projection of the target in the PTZ camera image plane
from the optical centre of the image. Based on the motion of
the robot and PTZ camera, equations (4) through (8) can be
written

-10 -5 0 5 10
Distance from cluster/line segment (m)

0

1

2

3

4

5

6

7

8

9

10

C
os

t

10 4

Figure 3: Cost function for line segment and arc data resid-
uals

c′P = c′

b′T × b′P (4)

bP = b
cT × cP (5)

b′P = b′

b T × bP (6)

b′P = b′

b T × b
cT × cP (7)

c′P = c′

b′T × b′

b T × b
cT × cP (8)

The final projection residual is written as

proj residual =
1

Pc.z
×K×c′

b′T ×b′

b T ×b
cT ×cP −

 cxcy1.0
1.0


(9)

where Pc.z represents the z component of Pc and K is
the camera matrix for homogeneous coordinates, defined by
equation (10)

K =

[
fx 0.0 cx 0.0
0.0 fy cy 0.0
0.0 0.0 1.0 0.0

]
(10)

where fx and fy represent focal lengths in x and y direc-
tion in pixels respectively, and (cx,cy) is the optical center
of the image in pixel units.

The camera in body is transformation is characterized by
a pure rotation from camera frame to the sensor link where
the PTZ camera is attached to the robot, and a pure transla-
tion from the sensor link to the body frame. Although the
translation part will vary from robot to robot, the matrix can
be written as equation (11)



b′

c′T =

−sin(p) sin(t)× cos(p) cos(p)× cos(t) 0.19
−cos(p) −sin(t)× sin(p) −cos(t)× sin(p) 0.0

0.0 −cos(t) sin(t) 0.395
0.0 0.0 0.0 1.0


(11)

The transformation of the body frame after motion in old
body frame is defined in equation (12)

b
b′T =

cos(dθ) −sin(dθ) 0.0 dx
sin(dθ) cos(dθ) 0.0 dy
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

 (12)

4.5 Target Distance Residual
The target distance residual is to minimize the distance be-
tween the projection of the target on the ground plane and
the robot. The residual can be denoted by equation (13)

dist residual.x = dx− bP.x

dist residual.y = dy − bP.y
(13)

where bP.x and bP.y denote the x and y components of the
target’s position in body frame.

4.6 Robot Reachability Residual
The optimization is run at a constant rate of 10Hz (which is
constrained by the data rate of the LiDAR sensor, and not
by the processing time of the optimization). Thus, the robot
has 0.1 seconds to execute the trajectory command sent to it.
If the target (dx, dy, dθ) values are set to be very large, the
robot may not be able to reach the target pose in time. Thus,
it is required to constrain the target pose command based
on the robot’s state (its current linear and angular veloci-
ties) and dynamics (maximum and minimum possible linear
and angular accelerations). The target pose positions can
be present only in the interior of a reachability curve, as
shown in figure 4. Thus, a high residual value is assigned
to all points outside the reachability curve, and 0 residual
is assigned to all values inside the curve. To generate the
reachability curve, linear velocities between minimum and
maximum possible velocities are sampled, and 10 small in-
tegration steps with time period set to 0.01 seconds (1/10th
of the time period of update) are performed.

5 Problem Solution & Robot Commands
The optimization problem is solved using the Ceres Solver
nonlinear least squares library (Agarwal, Mierle, and Oth-
ers ). A sparse Cholesky solver is used for solving linear
equations. Auto differentiation is used for calculating Jaco-
bians for all the residuals, although Jacobians for most resid-
uals were also manually evaluated on a MATLAB testbed
to check the correctness of the error functions being used.
As mentioned in section 4.6, the optimizer runs at a con-
stant rate of 10Hz. A tuple of camera and LiDAR data is
extracted using an ApproximateTime synchronizer in ROS.
The data is preprocessed using steps described in section 4.1.
The robot’s current odometry estimate is extracted from the

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
dx(m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dy
(m

)

10 -3 Velocity: 0.5, Angular Velocity: 0.25

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
dx(m)

-4

-3

-2

-1

0

1

2

3

4

5

dy
(m

)

10 -4 Velocity: 0.05, Angular Velocity: 0.1

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
dx(m)

-5

-4

-3

-2

-1

0

1

2

3

4

5

dy
(m

)

10 -4 Velocity: 0.25, Angular Velocity: 0

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
dx(m)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

dy
(m

)

10 -4 Velocity: 0, Angular Velocity: 0

Figure 4: Reachability plots for different starting velocities

odometry source, as described in section 4. The data tu-
ple and the odometry are both sent to the optimizer, which
calculates an optimal value of the target state [dx,dy,dθ,p,t]
that minimizes the sum of squares of all residuals. The pan
and tilt commands are sent to the camera directly. The robot
motion commands are sent to a Timed Elastic Bands (TEB)
local motion planner (Rösmann, Hoffmann, and Bertram
2015) implementation in ROS, which then gives a target
command velocity (linear velocity and angular velocity) for
the robot control. The motion control of the ground robot is
handled using a PID control strategy.

6 Simulation Results
The simulation environment used is a the open source ROS-
based environment Gazebo. The robot used in simulation
is the Summit XL by Robotnik Automation, which comes
with a PTZ camera attached. The code is written in C++ and
communicates with the simulator via ROS. The ground truth
of the robot’s orientation and position is used for feedback to
the optimization problem. The default Summit control pack-
age is used for robot’s control, and the PID gains are tuned
experimentally. For experiments in simulation the following
tests, incorporating realistic test conditions are defined:

• Camera tracking target with no robot motion (Fig-
ure 5): In this test, there’s no kind of obstacle avoid-
ance and no motion command is given, rather only the

Table 1: Tracking Performance

Target Speed(m/s) Number of Runs Successful Runs

1 6 6
2 7 7
5 10 9
10 8 4
15 4 1



Figure 5: Tracking target with no robot motion. Top: t = 1s,
Middle: t=3s, Bottom: t=7s

Figure 6: Following target in non-cluttered environment.
Top: t = 0.5s, Middle: t=2.5s, Bottom: t=6s



Figure 7: Following target in cluttered environment. Top: t
= 2s, Middle: t=5s, Bottom: t=10s

image reprojection residual is used with the motion vari-
ables (dx, dy, dθ) set to zero. The target was given a
random trajectory to traverse, which is generated using
Bézier curves. The speed of the target’s motion is grad-
ually increased and results are noted. The camera is able
to track targets moving up to the speed of 5m/s satisfac-
torily. (Table 1) The tracking failures usually occur when
the pan link has to rotate by 180 degrees after reaching its
limit on one end.

• Robot following a target in a non-cluttered environ-
ment (Figure 6): In this test, all the residuals are enabled,
but it is performed in a sparse environment, so the obstacle
avoidance residual does not contribute much. The target
was moved at 5m/s. The robot was successfully able to
track the target till the end of the trajectory in all 10 runs.

• Robot following a target in a cluttered environment
(Figure 8): In this test, the same settings as the previous
test were maintained, but the experiment was conducted
in a relatively cluttered environment. The robot was suc-
cessfully able to track the target till the end of the trajec-
tory in 8 out of 10 total runs. The first failure was when
the robot came too close to a wall while avoiding another
obstacle and the target became occluded. The second fail-
ure was due to the pan link being forced to rotate 180 de-
grees.

7 Real-World Experimental Results
For real world tests, a Clearpath Husky robot was used. The
PTZ camera used was the Axis P5514-E dome camera. The
ArUco marker was mounted at the end of a pole and the
robot was asked to follow the target. A Velodyne PUCK
VLP-16 LiDAR was used for range data. Although the data
comes in form of 16 rings, only the middle ring was used.
A Core-i5 2.4GHz laptop running Ubuntu 16.04 with ROS
Kinetic was used for the processing. In 3 separate runs, the
robot successfully followed the target, while avoiding obsta-
cles, in a mildly cluttered environment. The motion of the
person holding the pole, while standing close to the robot,
interfered with the results a bit, leading to an absurd rotation
executed by the robot in one of the runs, but the algorithm
successfully recovered the tracking after that particular fail-
ure.

8 Conclusions
Through this work, the capability of pan-tilt cameras as
enabler of aerial target following by a mobile robot was
demonstrated. Tracking at moderate speeds was satisfac-
tory. Optimal performance of the visual servoing operation
was demonstrated in both cluttered and non-cluttered envi-
ronments.

Future Work The aim of this project is to enable coop-
erative exploration using UAVs and UGVs, with either act-
ing as leader. An improvement that is currently required is
handling of cases when the pan link rotates by a full 180 de-
grees. More tests with targets mounted on an actual flying
vehicle will be performed in near future.



Figure 8: Real world tests

References
Agarwal, S.; Mierle, K.; and Others. Ceres solver. http:
//ceres-solver.org.
Delmerico, J.; Mueggler, E.; Nitsch, J.; and Scaramuzza,
D. 2017. Active autonomous aerial exploration for ground
robot path planning. IEEE Robotics and Automation Letters
2(2):664–671.
Falanga, D.; Zanchettin, A.; Simovic, A.; Delmerico, J.; and
Scaramuzza, D. 2017. Vision-based autonomous quadro-
tor landing on a moving platform. In Proceedings of the
IEEE International Symposium on Safety, Security and Res-
cue Robotics, Shanghai, China, 11–13.
Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas,
F. J.; and Marı́n-Jiménez, M. J. 2014. Automatic genera-
tion and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition 47(6):2280–2292.
Jung, B., and Sukhatme, G. S. 2004. Detecting moving ob-
jects using a single camera on a mobile robot in an outdoor
environment. In International Conference on Intelligent Au-
tonomous Systems, 980–987.
Jung, B., and Sukhatme, G. S. 2010. Real-time motion
tracking from a mobile robot. International Journal of So-
cial Robotics 2(1):63–78.
Kumar, V., and Michael, N. 2012. Opportunities and chal-
lenges with autonomous micro aerial vehicles. The Interna-
tional Journal of Robotics Research 31(11):1279–1291.
Michael, N.; Shen, S.; Mohta, K.; Kumar, V.; Nagatani, K.;
Okada, Y.; Kiribayashi, S.; Otake, K.; Yoshida, K.; Ohno,
K.; et al. 2014. Collaborative mapping of an earthquake
damaged building via ground and aerial robots. In Field and
Service Robotics, 33–47. Springer.
Park, J.; Hwang, W.; Bahn, W.; Lee, C.-h.; Kim, T.-i.;
Shaikh, M. M.; Kim, K.-s.; and Cho, D. 2011. Pan/tilt
camera control for vision tracking system based on the robot
motion and vision information. In IFAC World Cong, vol-
ume 44, 3165–3170.
Rohmer, E.; Yoshida, T.; Ohno, K.; Nagatani, K.; Tadokoro,
S.; and Konayagi, E. 2010. Quince: A collaborative mo-
bile robotic platform for rescue robots research and devel-
opment. In The Abstracts of the international conference
on advanced mechatronics: toward evolutionary fusion of
IT and mechatronics: ICAM 2010.5, 225–230. The Japan
Society of Mechanical Engineers.
Rösmann, C.; Hoffmann, F.; and Bertram, T. 2015. Planning
of multiple robot trajectories in distinctive topologies. In
Mobile Robots (ECMR), 2015 European Conference on, 1–
6. IEEE.
Rusu, R. B., and Cousins, S. 2011. 3d is here: Point cloud li-
brary (pcl). In Robotics and automation (ICRA), 2011 IEEE
International Conference on, 1–4. IEEE.
Rusu, R. B. 2010. Semantic 3d object maps for everyday
manipulation in human living environments. KI-Künstliche
Intelligenz 24(4):345–348.
Srinivasa, S. S.; Berenson, D.; Cakmak, M.; Collet, A.;
Dogar, M. R.; Dragan, A. D.; Knepper, R. A.; Niemueller,



T.; Strabala, K.; Weghe, M. V.; et al. 2012. Herb 2.0:
Lessons learned from developing a mobile manipulator for
the home. Proceedings of the IEEE 100(8):2410–2428.
Yu, M.-S.; Wu, H.; and Lin, H.-Y. 2010. A visual surveil-
lance system for mobile robot using omnidirectional and ptz
cameras. In SICE Annual Conference 2010, Proceedings of,
37–42. IEEE.


